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Nest pr1vios research o search for same playiss Ios
toosood on Improving $*&rob efficeoncy rather tken oa better

utillsiig available Isformatios. By doveloping models based en a
notion we call 'lsylag strength . we acquire the iaoight seeded
to develop stratoios whick perform better than minimax against
both perfect &ad imperfoot oppoaents. In particular sitsatious,
out decision strategies yield Improvements comparable to or
oeoodimg those provided by as additional ply of search.

1. minl-max for same playis8

Is sany competitive situations, decision Nakia sean be sided
by the use of Same models Amy two-player, sore-sun Same can be
represeuted as a miaimax Same tree, where the root of the tree
demotes the initial same situation and the ohildre of any sode
represent the results of the possible moves which sam be made
from that mode. In this paper we consider ways of improviag the
performance of the standard misinaxz backup algorithm. We follow
oavention sad call the two players Iaz* sad *him &ad use "+0

to deaote sodes where max moves aad - to represent similar
nodes for Kim. Positive eadgame (lot) values demote positive
payoffs for Nes. leaders umfamiliar with the conveatiosal
mislas backup search asd decision procedure should rotor to
Nilsson [go].

2. Problems with msimasx

Gives perfect play by our opponent, we kaow from same theory
that a ooavetiosal misimaz strategy which searches the entire
game tree yields the highost possible payoff. heover, most
actual players, whether hnas or machine, lack the conditions
seeded to insure optimal play. In partielar, because the trees
of may games are very deep, &ad tree size $rows expomentially
with depth, a complete search of most real gee tros is
compstationally intractable. Is these istacos, static
evaluation functions sad other houristic tochniques are employed
to reduce the search eod is Eakins decisions.

host previous research on search for Same playima has
focused on improviag searok efficiency. Results of this type
improve the quality of player decisiom makisg by providiag noer
relevant information. In ootrast, our roseseak focses on
bettor Utilizing informatie rather thaa aarching for more. We
summarize previous work on this issue, then describe our approach
snd provide initial results.

2.1 Previous work on oompoesatiat for laoompleto search

During the middle to late lo6s*, ames Blasts *ad his
assooitos sought to improve the porformaee of mimimas bakup by
attempting to predict the oapooted value of (31)-lovel mimimax
sors& with only a D-lovel soarch (gla 1l sad Dixon 170)). Their
strategy was called the on Gad N proooduroe bad determined the
value of a ma mode by soasiderial its M best ehildre and the
value of a Nis mode from its N best childrem. The study sited
above rotnioted the problem to searoc depth D32 &ad also
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restristed N ad N to be 2. Tbe algorithm they devised. which we
sumarize below. was tosted em aetual trees arisiag in the game
of K9aish.

The N sad N procedure is based om the notion that the
expected basked-up value of a sode is likely to differ from the
expected backed-up value of its best ohild. To investigate the
exact nature of this differeace, Lmvestigators $*aerated sample
K1alsh positioms and can 1-ply sad 2-ply searches em them. From
this empirical data they plotted the difference betweem the
static ad 2-ply backed-up values of eash position agaiast the
differeace betweem the static values of the two best childrem.
From this data they defimed a "boas$ fautioan to be added to the
static value of best-lookisg child. hoping that this would lead
to a better estimate of the true value of the parent. As shown
is their papers this beaus fumetion tursed out to be
approximately linear. Their results were (1) that the *improved"
algorithm won about 51.1 percent of the games. and (2) that N and
N yields &a improvemeat is the expeted value of the outcome of
the same about 13 percent as great as does an additional ply of
search. They conclude that ON sad N as applied to K1alah provides
am advastage that is about as large as a typical value feature
(of the static evaluation function] but met as large as an
umusselly powerful 020"o

The reader will mote Is the follewimg sectiom a resemblamee
between the notion of a beaus tatiom and eur attempt to mere
accurately predict the expected value ef moves made by a fallible
eppomeat. Im Ballard sad leibmam [0) we prove that is the
simplest form of the first of two models we present below, with a
fixed probability of opposout error, imdepemdemt of the
differesee between sadidate mode, *ur results cam be obtaimed
by am appropriate form of K and N strategy (and vices versa).
although the exact backed-up values being determined will differ.
This is due to the linear mature of the beaus facatios determined
as eutlimod above. We have alse shown that the arc-gs tree
model we have adopted would lead set to a lisear beaus fsuctioa
but rather to one described by a 4-th degree polyaomial.

1.2 The umresolved problem of opposest fallibility

Ia additiom to levies am isability to eompletely search
actual game trees, actual implemeatatioss of misimax assume
perfeet play by their epposeat. lowever. this assumption often
is overly eomservative sad cea be detrimestal to Sood play. Am
Immediate sad extreme example is found is forced loss situations.
Is the two-valued game is Figure 1, sax is faced with a forced
loss. Regardless of the move max makes at the 0+ mode, if Nim
plays gOrrostly 282 will always lese. Followimg the eonventional
sisimax strategy. max would play sdoaly, picking either asbtre
with *eual trequemey. Sppose however, that there is a moasero
probability that Nis will play iseorreetly. For the moment.
assume His males as iseorreet move 10% of the time. flea If lax
mOve$s audomly, the expected outcome of the game Is .5(0) +



.S(.P*O + .Iel) - .OS. It Has kaows that. on oscasion, His will
move ineorrectly, this ksowledge ao be used to Improve the
expected payoff from the same. specificslly, Iax eo regard Saab
0-. sode as a *h*en*# node" similar to those that represent
oases eveats such as dice rolls in som-miimax games. (lallard
182,81) gives algorithms suited to this broader class of 00-
minimsz games.) Thus NMa evaluates 0-0 by computing a weighted
average of its children based 's their conJectured probabilities
of boing @hoses by Nis rather than by fiadisn Just the mimimum.
Following this strategy. max eomvorts the pure misings tree of
Figure 1 to the 0-mimimax trot shows is Figure 2. determines the
values of the Children of the root as 0 and 0.1. and selects the
rightmost breach of the game tree because it sow ha the higher
bahked-up value. Is terus of expected payoff, (wkieh is computed
as 00(0) + 1.0e(.940 + .101) - 0.1), this is clearly as
improvement over standard misimaz play. Furthermore, this
strategy Is an improvement over misimaz In forced lose situatioms
regardless of the particular probability that Kim will err. Our
observed improvenent is forced loss situations is a specific
example of Otio-breakimg" , where the equal grandchild values
happen to be zero. Because minimax only uses information
provided by the oxtreome-valsed children of a mode, positions with
different ozpocted results often appear equivalent to mniimax.
Variant minimal strategies can thus improve performance by
breaking ties with isformatios misimax obtains but does not use.

A less obvious opportunity 'for improving minimazx'
performasae is found in Fiurs J. Assume as above that Via makes
the correct move with probability .P. If Nax uses the
conveatiomal backup strategy sad chooses the left sode, the
expected outcome of the same is 2.1. If. however, we recognize
our opposent's fallibility and convert the min modes to "eeni
(as is Figure 4). we will ehooe the right branoh and the games
expected result increases to 2.P. Thus by altering the way we
backup values to our opponeat's modes is the game tree, we can
improve our expected performasee agsinst as imperfect epponest.

In the example of a forced loss, the improvement is
performance was due to the ability of a Weighted average backup
scheme to eorrectly choose between moves Whick appear equal to
cosvestional minimax. Is the Seeond example, our variast backup
yielded a *radical differenee" from mimimax, a choice of move
which differed sot because of *tie-breaking.o  but because
differisg backup strategies prodsed distinet ehoices of which
available move is correct.

S. Adversary models for imvestilatioa

gavial observed as oppertusity to profit by exploiting
errora which might be made by cur opponent, we sew formulate a
model of a fallible adversary's behavior. Our model is based c&
the seseept we call oplayiag strength". Intuitively. playing
strength is an imdication of how well a player cam be expected to
perform is actual competition rather than &$&ast a theoretical
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perfect player* Is erder to be a useful metric. a playing
strength parameter should have at least the follouiag properties:

1. Gives two players 9 *ad H, where the playing strength
of N greatly exceeds that of N, V should play better tham
N against any fixed third player 0, where better play is
defined as wisaing a higher proportion of the games
played of having a better expected payoff.

11. Assume X sad N are as above &ad consider a mode P
where cad N have two possible moves available. If the
Children of P are denoted T and 9, sad the expected
payoff from making move r is greater than the expected
payoff from making move a for both V ad N. then K should
choose NOve r over move a with a probability greater than
or equal to the probability that N chooses r over s.

3.1 A simple playing stromgth based model

maying lives general axios for our Intuitive motion of
playing strength. we now describe a particular model for an
imperfect player's behavior we have chosen to study. Actually.
we lave already presented a simple example of playiag strength In
a model for playiag biary-tree games. Let the playjag strength
be the probability that a player chooses the move which, in the
present game position against the current opponent, yields the
best expected eadgame result. Siace the theoretically correct
move cam be difficult to determine. ire approximate it in our
model by u&s$ a conventional misimax. search. usiag this
approximation, we model an imperfect sin player of strength S by
cheosing the move with the best minimax evaluation with
probability *ad the ether available move with probability 1-S.
We can geseralixe this model for trees with bronchi&& factor 3 in
several ways: (1) by considering only the two best available
moves; (2) by choosing the first move with probability S. the
second with probability 3C*l-S). the third with probability S 0
(lIgVee2, and the ath with probability 8 e 0 gO(~) (3) by
sting other variant decisien strategies mot discussed here. In
the second case, it should be noted that these probabilities are
as approximation. Their sum approaches 1 only as 3 goes to
infinity, otherwise the sum differ$ from 1 by (l-B)SO3.

9.2 A more sophisticated model of imperfect play

The model presented Is simple to implement &ad, as shown is
Ballard &ad Beibmen fe33. results in hetter play than does
minimax. in some broad closses of game situations. lowever. it
fails te consider the relative differences between moves. For
oeaple, if node values range feom 0 to 10. any reasonable player
should choose a node valued 2 ever a nede valued 10 more often
then a mode valued 2 would be chosen over one valued S. To
sorrect this we present a second model of imperfect play.

Is loneral. It should 'be fairly easy to differentiate
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between moves whose values differ greatly. lowever, if two moves
have approximately the same value, it could be a more difficult
task to shoose between then. The strength of a player is, in
part, his ability to choose the correct move from a range of
alternatives. Playing strength Gan therefore correspond to a
Orange of discernmento. the ability of a player to deternine the
relative quality of moves. An inability to distinguish between
moves with radically different expected outcomes could have
drastic consequences. Similar difficulties with moves of almost
equal expected payoff should, on the average, have much less
effect on a player's overall performance.

We model players of various strengths by adding noise to the
information they use for decision masking. A player with
noiseless move evaluation is a porfect opponent", while a player
with an infinite amount of noise injootod into Its ovaluation
plays randomly. We introduce noise at the top of an imperfect
player's search tree in an amount inversely proportional to the
player's strength. Although it may appear to be easier, aad
perhaps more reasonable, to iatroduce noise at the leaves or in
the static ovaluation function, we avoid this alternative for a
number of reasons. First# we tool introducing noise at the top
better models the notion of opponent fallibility while noise in
the leaves reflots the problems of incompleto search.
Furthermore. the actual offset of adding noise to the tops of
search trees son be studied analytically while the effects of
Introducing noise in the leaves are aot yet understood [Nau 501.
We now describoe the details of the imperfect player model used in
the remainder of this paper. Each imperfect player is assigned a
playing strength between 0 (perfet) and minus infinity (random).
In our simulation, the imperfect Kin player conducts a
conventional minimax backup search to approximate the actual
value of each child of the current position. The backed-up
values of each child are then notalized with respect to the
ran&e of possible backed-up values and a random number, 0 (- a (-
-3. (where S Is the playing strength. a reel number (- 0), is
added to the normalized value of eeck child. The true value with
noise added is then treated as a conventional backed-up value.

4. An empirical analysis of the effect of imperfect play

In order to investigate the correlation between playing
strength as defined in out model and performance in actual
competition, we have conducted trials pitting minimax against
imperfeet opponents with varying playing strengths. we conduot
our trials with oonplete, n-Ary Same trees generated as functions
of throe parameters: D denotes the depth of the tree in ply, ar
the branching faster, and T. the maximum allowable "are valuew.
In previous studies of search for sae playing, leaves have been
assigned independent random numbers as values (o. a. Kzuth and
Moosr [|Pearl 1833). or their values have been obtained by
growing the tree in a top-dow fashion (Fuller. et al [1). Is
our empirical study, we employ the letter method. Every are In
the tree Is assigned a random integer chosen from a uniform



distribution betwee 0 and V. The value of each leaf is them the
sU of the area leading to it from the root. This method issures
a fairly strong depeadeace between the values of brother sad
sisters In the same tree. (We are is the process of formnuitiag
a method of charscteriuing the atusl degree of dependence is
same trees.) We feel that sames with some dependence more
&ccuttely models real world applicstions of gsme playing and
reduces the chanee of ansmalous behavior (Pearl [821). In
addition to producing trees with a fairly high degree of
dependence. the method of top-dows tree growth has two other
advantages. First, if the tree is fairly deep in relation to the
players' search depths, we seed to grow only those paths which
immediately surround the line of play, a $rest savings in
simulation time. Secoad, the arc-sum method of loaf value
calculatios provides a natural static evaluation function for a
sode. the sun of the ares leading from the sode to the root.

To have conducted a aumber of experiments to measure the
gains made by minimax agaiast imperfect opponeats of vsrying
stronaths. We present the results of three such experiments,
each consisting of 1000 Same trees with D-S, V=10, snd Br-2, 4.
or 10. Both Max snd Via used 2-ely searches sad the partial
arc-sam static evaluation to deternize their moves. Thus, each
Sse lasted five moves, sad the *is player had the first
opportunity to see the actual leaves of the Same tree. The trees
weore created by geserstisg random arc values with the UNIX
pseudo-random umber $*aerator on a PDP-11/70. For each
collection of 1000 trees, lax played each game sgiast several
opponents with differing playing stroamths. The results are
summarized Is Figure S. As expected, lax's payoff increased
mosotonically as the imperfect player model's strength decreased.

S. A strategy for use agaiast as imperfect opponent

we now protest a strategy based on the e-misimaz search
algorithms for trees eontaisisg ahase* sodes is order to improve
performance by compessating for the probabilistic behavior of a
fallible opposeat. Our strategy predicts Nis play by using the
follovia8 assumptios to evaluate 0-_ modes:

1. Agaiast a His player assumed to be perfect, we should
use a eonveatioual Max strategy.

I. Agaiust as opponent who is assumed to play randomly,
we should evaluate 0-0 modes by taking a& aaweightod
average of the values of their children. values of their
childres.

III. Is geseral, &gaist Imperfeet players, we should
evaluate 0-0 modes by taking a weighted average of the
values of their children, deriving the appropriate
probabilities for eomputisg this average by using, is
past# as estimate of our opponents playing stresgth.
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To predict the moves of our imperfect opponent, we consider
the *-mininaz based nodal of imperfect player behavior presented
is secties 3-1. note specifically, we ass1gm our opposest a
predicted strength# demoted PS. between 0 and 1. To determine
the value of N-0 modes directly below the root. our predictive
strategy searches ad backs up values to the &odes directly below
each 0- sod* usiag conveatioaal misima:. Each -0 Rod* is them
evaluated by first sortiag the values of its children is
isezeasisg order, then takisg a weighted average going
probabilities PS. (lP0P,.,l~SC(rl Pg. If P8-1. we
have predicted that our opponent is perfect. so we consider only
the miimum-valued child is evaluating a *- mode. At the other
eStreme# if a radom opponent is predicted. i, e. PS is
approximately 0. the probabilities used to compute the weighted
average are all equal and the min mode is evaluated by averagiag
the values of its children.

now well our asauptioas predict the SOves of imperfect
opponents should be reflected Is our strategy's actual
performance agsast such players. Note that the playing stremgth
metric as used is the simulated Mim player say sot directly
correspond to the playing streagth metric used by our lax player
to predict Mis's behavior. We &ro eurreatly imvestigatimg how to
choose the predicted strength which yields the maximum payoff for
our strategy -gives an opposest model aad am actual playing
stremgtt.

6. As empirical asalysis of predictive play

Agaimat imperfect players of selected streagth we oaduct an
empirical study to compete the performance of our predictive
algorithm with that of coaventiomal mliiax backup. As in the
empirical amalysis is section 4. we see a sample of 1000 randomly
gemerated game trees tith Dr-4. D-5. aad V-10. We use three Kim
opposests: true Min with s oise added, as imperfect Mim player
with soise values obtaimed from a umiform distributios between 0
&ad .5. said as approxinatios of a rendon player with so *is values
chose& from the rasSe 0 to 6. Agaist these Kim players, we test
1-a 2-, and S-ply searchiaX comvostional lax &ad 10 predictive
players. each with a 2-ply search and and a Pg chose& from
betwees 0 asd .t. The results of this experimest are found is
Filur* S. Before sumarizisS our observations, we sot* that the
smbers gIVes in Figure 6 represst poists em a eomtisu; they
indicate geseral trends but do sot eomvey the satire spectrum of
values whisk lie between the poists we have iseluded.

Ithe first *Olson of Filue 60 we observe that, though it
ngtbe expected that pure Max backup would be the optimum

strategy sasst eesvemtlosal Kim. several of our predietive
players perform better them as eaventiesal Max player searehisg
the same somber of ply. Our observed improvement Is so suck as
7% of the gais we would expeet from addling as additional ply of

77-3-
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sarch to the conventional max strategy. This result is
amalogons to that obtained with Slagle and Dixon's N and N
strategy. Like I and N, our Improvement is due, at least in
part, to a strategy which, by considering information from nore
than just the extrone-valned children of a node, partially
compensate* for a search which fail* to reach the leaves.

Is the second column of Figure 4. we see that against as
opposent whose play Is sometimes imperfect, our strategy @&a
provide almost hall the expected improvement given by adding an
additional ply of search to a soaventioaal Max strategy. We
believe this gain is due primarily to the ability of our strategy
to capitalize on our opponents potential for errors.

If we examine the results in column 3 of Figure 6. we
observe that, against a random player, our strategy yields an
improvement between 2 aad 3 times that provided by ant additional
ply of search. As the predicted strength of our opponent goes
down. our predictions of our opponent's moves become more a
simple average of the alternatives available to him than a
mimima: backup. 'We have previously conjectured that the most
accurate prediction of the results of random play is such an
average and, as expected, our strategy's performance continues to
improve as the strength predicted decreases.

Our final comment Is to observe a possible drawback to the
indiscrimiate use of our strategy. When we begin to
overestimate our opponents fallibility, out performance degrades.
Is both columns 1 sad 2, our performance peaks, them if we
inaccurately overestimate the weakness of our opponent, our
performance declines and. in column one. actually falls below
that of conventional max.

7. Conclusion

In this paper we have Lntroduced the problem of adaptiag
Same playing strategies to deal with Imperfect opponents. We
first observed that, against a fallible adversary, the
convontionial miznaz backup strategy does not always choose the
move whish yields the best expected payoff. To investigate ways
of improving minima:, we formulated a general model of an
imperfect adversary aging the concept of Oplayiag strength M. We
then proposed several alternative game playing strategies which
eapitalise ea their opponents potential for error. As empirical
study was conducted. to compare the performance of these
strategist with that of minima:. Even against perfect opponents.
our strategy showed a marginal improvement over minima: and, in
some ether eases, great increases in performance were observed.

We have presented the preliminary results of out efforts to
develop variant miina: strategies that improve the performance
of Same players in actual competition. Our present sad future
research includes a continued effort to expand and generelise our
models9 of imperfest play, our predictive strategy, and the notion

-um9-



of playing strength. Further study of our models has lncluded
not only additional empirical ezperiments but also closed-form
analysis of some closely related Same tree &stab problems. Te
hope to eventually acquire a unified understanding of several
distinct problems with taimauz in order to develop a more general
&ame playiag procedure which retains the stroi points of mininax
while eorreotiag its perceived inadequacies.
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age payoff for riniLax in deDth S Sa~cs
against ir.perfect opponents of various
streagtl.s. :acl. player conduutci c 2-ply
searct. The arc-values ranged from 0-10.
The average is based oa 1000 trial ga:4

-tr ce S .

?VIj#1



Sprcad of 'oisc A-Ided to
.i ' valu-tio

::: , a' r 1 0.0 0.5 5.0

l-1,1y 1 27.31 3C.17 3-.6

convention.l 1
2-1y 2I.2 32.3S 3A.54

conventional I
3-ply 1 29.13 33.43 34.79

prc.Iictivc

PT= .0 ! 2.3.31 33.30 34.77
-- --- - -- - -- - - -- -- - - - - -

12=.9.31 3 .0. 34.117

P=. I 2C.32 33.01 34.77
?41 -

* =-' I 23.30 33.04 3..3

T-S:. !22.?.3 33.07 3.3 ?

7-. Z7 .1 .

PS=.3 I .Z .32 33.03 3A .7

^= .2 1 23.20 33.10 34.93

P. 2S.12 33.07 35.00

7iure 6: This table co:apares the rela-
t ive pe rfor*..ancc of conventional ax.
redictivc ::ax players against three 'in~
players of different strengths. Each

-figure is based on 1000 gaffe trees with'
P=5, Br=4! and V=10.

--Z= . 3 .. - ; 3 3 . 0 3 1. 7_


